Finding local min, max, and saddle points in multivariable calculus

Click For Summary
The function f(x,y) = 1 + 2xy - x^2 - y^2 has critical points along the line where y = x, indicating potential local extrema. The Second Derivative Test yields an inconclusive result with D = 0, prompting a search for alternative methods. Rewriting the function as f(x, y) = 1 - (x - y)^2 shows that the minimum value is 1, occurring at points of the form (x, x). This approach clarifies the local maximum and minimum values without reliance on the inconclusive test. The discussion highlights the importance of alternative methods in multivariable calculus for identifying extrema.
woodenbox
Messages
6
Reaction score
0

Homework Statement



Find the local maximum and minimum values and saddle point(s) of the function.

f(x,y) = 1 + 2xy - x^2 - y^2

Homework Equations



The Second Derivative Test: let D = D(a,b) = fxx(a,b)*fyy(a,b) - [fxy(a,b)]^2
if D > 0 and fxx(a,b) > 0, then f(a,b) is a local minimum
if D > 0 and fxx(a,b) < 0, then f(a,b) is a local maximum
if D < 0 then f(a,b) is a saddle point
if D = 0 then the test is inconclusive

The Attempt at a Solution



I tried to use the Second Derivative Test to find the local mins, maxes, and saddle points but it's inconclusive, and I don't know how else to find them. My textbook says the answer is "f has a local maximum value of 1 at all points of the form (x, x)"

This is my work for the Second Derivative Test:

fx = 2y - 2x = 0 --> 2y = 2x --> y = x

fy = 2x - 2y = 0 --> 2x - 2(x) = 0 --> 0 = 0

so i guess there are critical points at every value where y = x... which matches the textbook's answer.
and then:

fxx = -2

fyy = -2

fxy = 2

so D = fxx * fyy - (fxy)^2 = (-2)*(-2) - 2^2 = 4 - 4 = 0 so the test is inconclusive

Is there a different way to find the local mins, maxes, and saddle points?
 
Physics news on Phys.org
got the answer, for anyone else who looks this up.

Rewriting the function as f(x, y) = (x - y)^2 + 1,
we see that the minimum value must be 1 (since 0 is the smallest value of a square),
and this is attained whenever y = x (i.e., points of the form (x, x)).
 
woodenbox said:

Homework Statement



Find the local maximum and minimum values and saddle point(s) of the function.

f(x,y) = 1 + 2xy - x^2 - y^2

Homework Equations



The Second Derivative Test: let D = D(a,b) = fxx(a,b)*fyy(a,b) - [fxy(a,b)]^2
if D > 0 and fxx(a,b) > 0, then f(a,b) is a local minimum
if D > 0 and fxx(a,b) < 0, then f(a,b) is a local maximum
if D < 0 then f(a,b) is a saddle point
if D = 0 then the test is inconclusive

The Attempt at a Solution



I tried to use the Second Derivative Test to find the local mins, maxes, and saddle points but it's inconclusive, and I don't know how else to find them. My textbook says the answer is "f has a local maximum value of 1 at all points of the form (x, x)"

This is my work for the Second Derivative Test:

fx = 2y - 2x = 0 --> 2y = 2x --> y = x

fy = 2x - 2y = 0 --> 2x - 2(x) = 0 --> 0 = 0
fx = 2y - 2x
fx = 0 ==> y = x

fy = 2x - 2y
fy = 0 ==> x = y

fx and fy are both zero along the line y = x.
woodenbox said:
so i guess there are critical points at every value where y = x... which matches the textbook's answer.
and then:

fxx = -2

fyy = -2

fxy = 2

so D = fxx * fyy - (fxy)^2 = (-2)*(-2) - 2^2 = 4 - 4 = 0 so the test is inconclusive

Is there a different way to find the local mins, maxes, and saddle points?

The function can be written as f(x, y) = 1 - (x2 - 2xy + y2), and the right side can be written in factored form, which should give you some ideas for finding the global maxima and minima.
 
that does make a lot of sense... i never thought to take a more direct approach. thank you for your help!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
5
Views
6K
Replies
1
Views
1K
Replies
2
Views
2K