MHB Finding missing point of a vector when it is perpendicular to a line

AJTheRed
Messages
1
Reaction score
0
The question:
The line L1 has equation $$r = \left( \begin{array}{ccc}4 \\-1 \\0\\\end{array} \right) + t\left( \begin{array}{ccc}1 \\1 \\-1\\\end{array} \right) $$, and point A has coordinates (4, 8, -3).

Find the coordinates of point B on L1, such that $$\overrightarrow{AB}$$ is perpendicular to L1.

My attempt to answer:
I know that $$\overrightarrow{AB} \cdot \left( \begin{array}{ccc}4 \\-1 \\0\\\end{array} \right) + t\left( \begin{array}{ccc}1 \\1 \\-1\\\end{array} \right) = 0$$. I also know that this scalar product has to do with finding point B. I also know that $$\overrightarrow{AB}$$ = $$B-A$$ = $$B - \left( \begin{array}{ccc}4 \\8\\-3\\\end{array} \right)$$ and I think that $$\left( \begin{array}{ccc}4 \\-1 \\0\\\end{array} \right) + t\left( \begin{array}{ccc}1 \\1 \\-1\\\end{array} \right) = \left( \begin{array}{ccc}4+t \\-1+t \\0-t\\\end{array} \right)$$. If all of this is plugged into the scalar product, we get $$\left(B - \left( \begin{array}{ccc}4 \\8\\-3\\\end{array} \right)\right)\cdot \left( \begin{array}{ccc}4+t \\-1+t \\0-t\\\end{array} \right) = 0$$, which can be rewritten as $$V_{1}W_{1} + V_{2}W_{2} + V_{3}W_{3} = 0$$ or $$((B_{1}-4)(4+t))+((B_{2}-8)(-1+t))+((B_{3}-(-3))(-t)) = 0$$. Assuming that I've done everything above correctly, what I am struggling with is figuring out how to go about finding the B and t values so that the scalar product is equal to zero. Any hints as to a mistake or mistakes I may have made or what I should do next is very much appreciated and I thank you for taking the time to read through this whole question to lend some support.
 
Mathematics news on Phys.org
AJTheRed said:
The question:
The line L1 has equation $$r = \left( \begin{array}{ccc}4 \\-1 \\0\\\end{array} \right) + t\left( \begin{array}{ccc}1 \\1 \\-1\\\end{array} \right) $$, and point A has coordinates (4, 8, -3).

Find the coordinates of point B on L1, such that $$\overrightarrow{AB}$$ is perpendicular to L1.

My attempt to answer:
I know that $$\overrightarrow{AB} \cdot \left( \begin{array}{ccc}4 \\-1 \\0\\\end{array} \right) + t\left( \begin{array}{ccc}1 \\1 \\-1\\\end{array} \right) = 0$$. I also know that this scalar product has to do with finding point B. I also know that $$\overrightarrow{AB}$$ = $$B-A$$ = $$B - \left( \begin{array}{ccc}4 \\8\\-3\\\end{array} \right)$$ and I think that $$\left( \begin{array}{ccc}4 \\-1 \\0\\\end{array} \right) + t\left( \begin{array}{ccc}1 \\1 \\-1\\\end{array} \right) = \left( \begin{array}{ccc}4+t \\-1+t \\0-t\\\end{array} \right)$$. If all of this is plugged into the scalar product, we get $$\left(B - \left( \begin{array}{ccc}4 \\8\\-3\\\end{array} \right)\right)\cdot \left( \begin{array}{ccc}4+t \\-1+t \\0-t\\\end{array} \right) = 0$$, which can be rewritten as $$V_{1}W_{1} + V_{2}W_{2} + V_{3}W_{3} = 0$$ or $$((B_{1}-4)(4+t))+((B_{2}-8)(-1+t))+((B_{3}-(-3))(-t)) = 0$$. Assuming that I've done everything above correctly, what I am struggling with is figuring out how to go about finding the B and t values so that the scalar product is equal to zero. Any hints as to a mistake or mistakes I may have made or what I should do next is very much appreciated and I thank you for taking the time to read through this whole question to lend some support.

$\displaystyle \begin{align*} B \left( b_1, b_2, b_3 \right) \end{align*}$ is a point on $\displaystyle \begin{align*} \mathbf{r} \left( t \right) \end{align*}$, so we can write $\displaystyle \begin{align*} b_1 = 4 + t , \, b_2 = -1 + t , \, b_3 = -t \end{align*}$. Thus the direction vector $\displaystyle \begin{align*} \vec{AB} = \left( 4 + t - 4 , -1 + t - 8 , -t - \left( - 3 \right) \right) = \left( t , -9 + t , 3 - t \right) \end{align*}$

Since we know $\displaystyle \begin{align*} \vec{AB} \end{align*}$ is perpendicular to $\displaystyle \begin{align*} \mathbf{r}\left( t \right) \end{align*}$, that means

$\displaystyle \begin{align*} \left( 4 + t, -1 + t , -t \right) \cdot \left( t , -9 + t , 3 - t \right) &= 0 \\ t\left( 4 + t \right) + \left( -9 + t \right) \left( -1 + t \right) + \left( 3 - t \right) \left( -t \right) &= 0 \\ 4\,t + t^2 + 9 - 9\,t - t + t^2 - 3 + t + 3\,t - t^2 &= 0 \\ t^2 - t + 6 &= 0 \\ \left( t - 3 \right) \left( t + 2 \right) &= 0 \\ t = 3 \textrm{ or } t &= 2 \end{align*}$
 
If $\vec{AB}$ is perpendicular to the line $L_1$, we should have that $\vec{AB}$ is perpendicular to the direction vector $\begin{pmatrix}1\\1\\-1\end{pmatrix}$, shouldn't we? (Wondering)
That means that we should have:
$$\vec{AB} \cdot \begin{pmatrix}1\\1\\-1\end{pmatrix} = 0$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
Replies
10
Views
3K
Replies
8
Views
1K
Replies
5
Views
1K
Replies
7
Views
2K
Replies
13
Views
2K
Back
Top