indigojoker
- 240
- 0
I need to find the null space of:
\dotx \left(\begin{array}{cc}cos(\beta)-1&sin(\beta)e^{-i \alpha}\\sin(x)e^{i \alpha}&-cos(\beta)-1\end{array}\right)
so:
\dotx \left(\begin{array}{cc}cos(\beta)-1&sin(\beta)e^{-i \alpha}\\sin(x)e^{i \alpha}&-cos(\beta)-1\end{array}\right) \binom{x}{y} = 0
I'm not sure how to go about doing this because I've been staring at:
(cos(\beta)-1)x=-sin(\beta)e^{-i \alpha} y
sin(\beta) e^{i \alpha} x = (-cos(\beta)-1) y
for a while now and I'm not sure how to get the x and y values
\dotx \left(\begin{array}{cc}cos(\beta)-1&sin(\beta)e^{-i \alpha}\\sin(x)e^{i \alpha}&-cos(\beta)-1\end{array}\right)
so:
\dotx \left(\begin{array}{cc}cos(\beta)-1&sin(\beta)e^{-i \alpha}\\sin(x)e^{i \alpha}&-cos(\beta)-1\end{array}\right) \binom{x}{y} = 0
I'm not sure how to go about doing this because I've been staring at:
(cos(\beta)-1)x=-sin(\beta)e^{-i \alpha} y
sin(\beta) e^{i \alpha} x = (-cos(\beta)-1) y
for a while now and I'm not sure how to get the x and y values
Last edited: