Finding Orthonormal Basis of Hilbert Space wrt Lattice of Subspaces

adriank
Messages
534
Reaction score
1
I have a Hilbert space H; given a closed subspace U of H let PU denote the orthogonal projection onto U. I also have a lattice L of closed subspaces of H, such that for all U and U' in L, PU and PU' commute. The problem is to find an orthonormal basis B of H, such that for every element b of B and every element U of L, b is an eigenvector of PU (equivalently, b is in U or U).

The obvious thing to do is to apply Zorn's lemma to obtain a maximal orthonormal subset B of H satisfying the above condition, and this part works. For some reason or other, though, I'm having trouble showing that span B = H. If not, then letting W = span B, I need to find a normalized vector v in W such that for every U in L, v is an eigenvector of PU; then B ∪ {v} contradicts the maximality of B. (The following may or may not be helpful: It suffices to consider the case where U contains W.)

The idea I have right now is this: Suppose I could find a one-dimensional subspace V of W such that PV commutes with PU for all U in L, and let v be a normalized vector in V. Then for every U in L, PVPU(v) = PUPV(v) = PU(v), so PU(v) is in V. Since V is 1-dimensional, v is an eigenvector of PU(v), as desired.

The problem is that I have no idea how to choose V. I feel like this should be really easy, but for some reason I'm not seeing it.
 
Physics news on Phys.org


It is impossible, here is a counterexample:

Let your Hilbert space be L^2([0,1]), and let you lattice of subspaces is parametrized by a\in[0,1], namely

U_a = \{ f\in L^2([0,1]) : f(x) =0\ \forall x>a\}

It is easy to see that the projections P_{U_a} do not have common eigenvectors (because \displaystyle\cap_{a\in (0,1)}U_a =\varnothing)
 


Interesting, so it's impossible even if H is separable. Thanks.

I was more generally considering normal operators, rather than projections (although the case of normal operators can be reduced to the above problem). Wikipedia says it works if the operators are compact, or if one of them is compact and injective. I'll have to check if this is the case for the application I had in mind.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top