I Finding ##\partial^\mu\phi## for a squeezed state in QFT

Sciencemaster
Messages
129
Reaction score
20
TL;DR Summary
I'm trying to apply an operator to a massless and minimally coupled squeezed state, I'm having trouble calculating ##\partial^\mu\phi## but due to a sum over k and the ladder operators.
I'm trying to apply an operator to a massless and minimally coupled squeezed state. I have defined my state as $$\phi=\sum_k\left(a_kf_k+a^\dagger_kf^*_k\right)$$, where the ak operators are ladder operators and fk is the mode function $$f_k=\frac{1}{\sqrt{2L^3\omega}}e^{ik_\mu x^\mu}$$ (assuming periodic boundary condition in a three-dimensional box of side L where k is the wave number).
However, I'm having trouble calculating ##\partial^\mu\phi## due to the sum over k and the ladder operators. I would very much appreciate it if someone could help me through the math of this step!
 
Physics news on Phys.org
Well, ##\partial_\mu## is a linear operator, so you can apply it term by term in the sum. As for the ladder operators, if they're independent of ##x## you can just treat them like constants during the partial differentiation.

Btw, you'll need to use a different dummy summation index in the exponent so as not to conflict with the free index ##\mu## on ##\partial_\mu##. E.g., change ##k_\mu x^\mu## to ##k_\alpha x^\alpha##.
 
  • Like
Likes topsquark and vanhees71
One should also note that this doesn't describe a state but a field operator in terms of free-field energy eigenmodes or a neutral scalar field. The ##\hat{a}_k## are annihilation and ##\hat{a}_k^{\dagger}## in Fock space.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top