Finding Points of Inflection in Harmonic Oscillator Wave Function

ynuo
Messages
18
Reaction score
0

Homework Statement



Apply direct differentiation to the ground state wave function for the harmonic oscillator,

Psi=A*e^(-sqrt(mk)x^2/(2*h_bar))*e^(-i*w*t/2) (unnormalized)

and show that Psi has points of inflection at the extreme positions of the particle's classical motion.

The Attempt at a Solution



My understanding of this question is first I have to normalize the wave function to get the value of the constant A. Then I must differentiate twice and set the second derivative of the wave function to zero and solve the resulting equation. When I do that I get an equation whose solution is complex and is different than that required by the question.

Normalization:

after normalization I get A=(m*k)^1/8 / (2*(pi*h_bar)^1/4)

Differentiation:

d(Psi)/dx=A*(-sqrt(m*k) / h_bar) e^(-i*w*t/2) * x *e^(-sqrt(m*k)x^2/(2*h_bar))

d^2(Psi)/dx=A * e^(-i*w*t/2) * [(-sqrt(m*k) / h_bar) * e^(-sqrt(m*k)x^2/(2*h_bar)) + 4 * x^2 * (-sqrt(m*k) / 2*h_bar)^2 * e^(-sqrt(m*k)x^2/(2*h_bar))]

Setting d^2(Psi)/dx=0 I get:

(1+0.5*x^2) * e^(-sqrt(mk)x^2/(2*h_bar)) = 0

Whose solution is: 1.414213562 i, -1.414213562 i
 
Physics news on Phys.org
In the first place, neither the normalization nor the time-dependent part will have anything to do with location of the inflection points. Just drop them. You are not including them consistantly anyway. Second, in your first version of the second derivative I see a sign difference between the x^2 term and the other one. In your last form it has disappeared. Do it again. Much more carefully.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top