Finding Range of Temperature (T) as t Approaches Infinity

  • Thread starter Thread starter glid02
  • Start date Start date
  • Tags Tags
    Limit
glid02
Messages
54
Reaction score
0
I already found this equation:
T= 15/1.36(.6*sin(t)-cos(t))+100-23.971/e^(.6t)

Now I'm supposed to find the range of temperatures (T) as t approaches infinity.

I tried 100+(15/1.36*.6*sin(90))
and 100-(15/1.36*cos(0))

but that's not right. What am I missing?

Thanks.
 
Physics news on Phys.org
If I got it right your equation looks like this:
\frac{15}{1.36}[0.6sin(t)-cos(t)]+100-\frac{23.971}{e^{0.6t}}

Since \frac{23.971}{e^{0.6t}} goes to 0 when t goes to \infty you should calculate the maximum and the minimum of the expression \frac{15}{1.36}[0.6sin(t)-cos(t)]+100 and this will be your range of temperatures.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top