Finding Rate of Change for Water Level in a Trough

  • Thread starter Thread starter answerseeker
  • Start date Start date
  • Tags Tags
    Change
answerseeker
Messages
27
Reaction score
0
A trough is 10 ft long and its ends have the shape of isosceles triangles that are 3ft across at the top and have a height of 1ft. if the trough is filled with water at a rate of 12ft^3/min, how fast does teh water level rise when the water is 6inches deep?

so far i have: dv/dt= 12ft^3/min and need to find dh/dt.
V= base* height*length ? where length=10 ft.
what i don't understand is how come in my notes, the next step is that b becomes 0.5*b*h??
 
Last edited:
Physics news on Phys.org
I have no way to help you with what is written in your notes. But...

The expression:

V= b*h*L

Gives the volume of a solid with a rectangular cross section. You have a solid with a triangular cross section so the the expression

V = .5*b*h*L

Would be correct.

can you complete the problem from there?
 
answerseeker said:
A trough is 10 ft long and its ends have the shape of isosceles triangles that are 3ft across at the top and have a height of 1ft. if the trough is filled with water at a rate of 12ft^3/min, how fast does teh water level rise when the water is 6inches deep?

so far i have: dv/dt= 12ft^3/min and need to find dh/dt.
V= base* height*length ? where length=10 ft.
what i don't understand is how come in my notes, the next step is that b becomes 0.5*b*h??


V= base*height*length for a RECTANGULAR trough. This is TRIANGULAR. The area of a triangle is 0.5*b*h.
 
I think I get it now. since it's a triangular prism, you take the area of the triangle and multiply it by the base of the rectangle. I think that's correct now.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top