Finding Re (α + α^2 + α^3 + α^4 + α^5)

  • Thread starter Thread starter NEILS BOHR
  • Start date Start date
NEILS BOHR
Messages
79
Reaction score
0

Homework Statement


Let alpha = e ^ i8pi / 11 , then find Re ( alpha + alpha ^2 + alpha ^3 + alpha ^4 + alpha ^5).


Homework Equations





The Attempt at a Solution


look i hav reduced the expression to \alpha (\alpha^5 -1 ) / \alpha-1

now what to do??:confused:
 
Physics news on Phys.org
Have you tried using Euler's formula:
e^ix = cosx + isinx
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top