Finding Solutions to a Cubic Equation with Multiple Roots

  • Thread starter Thread starter Big-Daddy
  • Start date Start date
  • Tags Tags
    Cubic
Big-Daddy
Messages
333
Reaction score
1
I'm finding it hard to find the solutions to this cubic equation:

1/2 x^3 - 2.025647693*10^14 x^2 + 8.102590772*10^11 x - 8.102590772*10^8 = 0

I'm looking for the smallest real positive solution but no matter what solver I use I keep getting only one root (the one of order of magnitude 10^14). There should be a root of the order of 10-3 but I don't know how to find it, nor why my usually trusty solvers are giving only 1 root.
 
Mathematics news on Phys.org
You are probably using the Newton-Rhapson algorithm. This algorithm is used to solve ##f(x)=0## for various functions. It works by taking an initial guess and then recursively refine the guess.

Not all guesses work however. So the question is to find out what the best guess is and whether there are good guesses at all!

We have the following: http://en.wikipedia.org/wiki/Newton-Rhapson#Analysis

So if ##\alpha## is your root and if ##f^\prime(\alpha)## is nonzero, then there are good initial guesses. However, this is exactly what goes wrong here! The root ##\alpha## that you seek does have ##f^\prime(\alpha)=0##. This is why no initial guess will work and why you didn't find the solution.

There are other ways to find the solution though. It is hardly practical in many cases, but the rational root theorem works here. Either way, wolfram alpha could find the root: http://www.wolframalpha.com/input/?...x^2+++8.102590772*10^11+x+-+8.102590772*10^8+
and it's a very pretty root too!
 
^Yes
one thing you can do without changing to a different method is to solve
f'(x)=0
3/2 x^2 - 2*2.025647693*10^14 x + 8.102590772*10^11 = 0
if f'(x)=0 and f(x)=0 then x is a double root of f
 
If you substitute x = 10-3y into the equation, you get:

y2-4y+4 = 0. This neglects the cubic term, which is going to be minute compared to the other terms. So there is a double root at y = 2, or, equivalently, at x = 2 x 10-3.

Chet
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top