Finding Speed of Projection for Two Balls Collision

AI Thread Summary
The discussion centers on calculating the speed of projection for two balls that collide after being projected at different angles and times. The equations of motion in both x and y directions are established, with the key condition that the distances traveled by both balls are equal at the time of collision. The first ball is in the air for 2 seconds, while the second is in the air for 1 second. The user derived expressions for the speeds of both balls but questioned the correctness of their formulation regarding the sine functions involved. The final consensus suggests that the expressions for the speeds should include sin(A-B) instead of sin(A+B).
whiteman
Messages
8
Reaction score
0

Homework Statement


A ball was projected at an angle A to the horizontal. One second later another ball was projected from the same point at an angle B to the horizontal. One second after the second ball was released, the two balls collided. Find the speed of projection for the two balls.


Homework Equations


s = ut + 1/2 at2


The Attempt at a Solution


In x-direction:
sA = ua cosA t
sB = ub cosB (t-1)

In y-direction:
sA = ua sinA t -1/2 gt2
sB = ub sinB (t-1) -1/2 g(t-1)2

When they collide the distances they traveled in the x and y directions are equal to each other at t=2. I tried to solve for ua and ub but got stuck.
 
Physics news on Phys.org
Hi whiteman, welcome to PF.
When the balls collide, ball A is in the air for 2 s and ball B is in the air for 1 s.
For them x distance is the same. So
2*Ua*cosA = Ub*cosB -----(1)
For y
2*Ua*sinA - 1/2*g*(2)^2 = Ub*sinB - 1/2*g -------(2)
From eq.(1), find the expression for Ub and substitute it in equation (2) and solve for Ua.
 
Hi, thanks for the welcome.
Is Ua and Ub meant to expressed in terms of cos/sin of A/B or are they just numbers?
I got Ua = 3gcosB/4sin(A+B) and Ub = 3gcosA/2sin(A+B).
Is this right or am I going wrong?
 
In the expression of Ua and Ub sin(A-B) should be there instead of sin(A+B)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top