Finding speed using conservation of mechanical energy

AI Thread Summary
The discussion focuses on calculating the speed of a ball in a pinball machine using conservation of mechanical energy principles. The spring, with a spring constant of 675 N/m, is compressed by 0.0650 m, and the ball has a mass of 0.0585 kg. The key equation used is the conservation of energy, equating gravitational potential energy and spring potential energy at points A and B. The user initially calculates the speed at point B to be 23.105 m/s but questions the correctness of their approach and values. Clarifications are sought regarding the potential energy of the spring after it has expanded, indicating a need for further validation of the calculations.
Ester
Messages
50
Reaction score
0
In preparation for shooting a ball in a pinball machine, a spring (k = 675 N/m) is compressed by 0.0650 m relative to its unstrained length. The ball (m = 0.0585 kg) is at rest against the spring at point A. When the spring is released, the ball slides (without rolling) to point B, which is 0.300 m higher than point A. How fast is the ball moving at B?

I drew three springs vertically each having a ball on the top. The first spring on my left, is unstrained. The second spring is compressed by 0.065 m. The third spring is the tallest, it is .3 m above the second spring. The second spring having a ball at the top is called point A. The third spring having the ball at the top is called point B. I made my h=0 at point B.
From the way I understand the problem, speed at A is zero and mgh at B is also zero. This leads me to the following equation:
(mgh at A) + (1/2)(k)(x^2 at A) = (1/2)(m)(V^2 at B) + (1/2)(k)(x^2 at B)

I don't know if this is right, but I think that h at A is -0.3. Also, x^2 at A is 0^2 - (0.065^2). My x^2 at B is (-(.065^2)) - (.235^2). Plugging everything in, I get my speed at B to be 23.105 m/s. Is this right? Am I using the right approach. Are my values right? Unfortunately, this question is an even question from my textbook, so I do not have an answer for it. If someone is certain, please help me.
 
Last edited:
Physics news on Phys.org
I don't think the spring expands all .3 meters with the ball. I think the ball leaves the spring when it expands. I think you can neglect the potential energy of the spring after it has expanded.
 
thanks, your right, the answer works that way
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top