Finding the Constants in a Second Order Differential Equation

alyston
Messages
3
Reaction score
0

Homework Statement



d2y/dx2 = 2-6x

Given: y(0)=-3 and y'(0)=4


Homework Equations



None that I know of.

The Attempt at a Solution



I know that for a single order derivative you would just find the integral, set y=1 and x=0. But I'm confused because here we're given two conditions, instead of just one. And I don't know how to do this type of problem with a second order derivative. But I know that:

The second integral of 2-6x is x2-x3. So,
y=x2-x3 + C
1= C

I also know that the first integral is 2x-3x2

But where does y'(0)=4 come into place? Do I need two equations here?
Mainly, I need to find the value of C, which stands for Constant.

Thanks! I'd really appreciate any help.
 
Physics news on Phys.org
If you integrate twice, each time you have to introduce an integration constant. That's why you need two additional conditions to find these constants.

So the antiderivative of the antiderivative of 2-6x is

a) x^2 - x^3.
b) x^2 - x^3 + C
c) x^2 - x^3 + Cx +D
d) x^2 - x^3 + C + D
e) all 4 of the above
f) none of the above 5 options
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top