the eigenvectors(left) and eigenvalues(right) of the Hamiltonian are:
\left|\uparrow\uparrow\right\rangle : (1+c)/2
\left|\downarrow\downarrow\right\rangle : (1+c)/2<br />
\frac{1}{\sqrt{2}}(\left|\uparrow\downarrow\right\rangle - \left|\downarrow\uparrow\right\rangle ) : (-3+c)/2
\frac{1}{\sqrt{2}}(\left|\uparrow\downarrow\right\rangle + \left|\downarrow\uparrow\right\rangle ) : (1-3c)/2
Write H = XDX-1,
\begin{displaymath}<br />
\mathbf{H} =<br />
\left(\begin{array}{cccc}<br />
1 & 0 & 0 & 0 \\<br />
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\<br />
0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\<br />
0 & 0 & 0 & 1 \\<br />
\end{array}\right)<br />
<br />
\left(\begin{array}{cccc}<br />
\frac{1+c}{2} & 0 & 0 & 0 \\<br />
0 & \frac{-3+c}{2} & 0 & 0 \\<br />
0 & 0 & \frac{1-3c}{2} & 0 \\<br />
0 & 0 & 0 & \frac{1+c}{2} \\<br />
\end{array}\right)<br />
<br />
\left(\begin{array}{cccc}<br />
1 & 0 & 0 & 0 \\<br />
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\<br />
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\<br />
0 & 0 & 0 & 1 \\<br />
\end{array}\right) <br />
<br />
\end{displaymath}<br />
<br />
Therefore, take k = 1,
\begin{displaymath}<br />
\mathbf{e^{-\beta H}} =<br />
\left(\begin{array}{cccc}<br />
1 & 0 & 0 & 0 \\<br />
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\<br />
0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\<br />
0 & 0 & 0 & 1 \\<br />
\end{array}\right)<br />
<br />
\left(\begin{array}{cccc}<br />
e^{-\frac{1+c}{2T}} & 0 & 0 & 0 \\<br />
0 & e^{-\frac{-3+c}{2T}} & 0 & 0 \\<br />
0 & 0 & e^{-\frac{1-3c}{2T} }& 0 \\<br />
0 & 0 & 0 & e^{-\frac{1+c}{2T}} \\<br />
\end{array}\right)<br />
<br />
\left(\begin{array}{cccc}<br />
1 & 0 & 0 & 0 \\<br />
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\<br />
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\<br />
0 & 0 & 0 & 1 \\<br />
\end{array}\right) =<br />
<br />
\left(\begin{array}{cccc}<br />
e^{-\frac{1+c}{2T}} & 0 & 0 & 0 \\<br />
0 & \frac{1}{2}(e^{-\frac{-3+c}{2T}}+e^{-\frac{1-3c}{2T}}) & \frac{1}{2}(-e^{-\frac{-3+c}{2T}}+e^{-\frac{1-3c}{2T}}) & 0 \\<br />
0 & \frac{1}{2}(e^{-\frac{-3+c}{2T}}+e^{-\frac{1-3c}{2T}}) & \frac{1}{2}(e^{-\frac{-3+c}{2T}}+e^{-\frac{1-3c}{2T}}) & 0 \\<br />
0 & 0 & 0 & e^{-\frac{1+c}{2T}} \\<br />
\end{array}\right)<br />
<br />
<br />
<br />
\end{displaymath}<br />
<br />
However, the ans. in the notes is:
\begin{displaymath}<br />
\mathbf{e^{-\beta H}} =<br />
\left(\begin{array}{cccc}<br />
e^{-\frac{1+c}{T}} & 0 & 0 & 0 \\<br />
0 & cosh\frac{1-c}{T} & -sinh\frac{1-c}{T} & 0 \\<br />
0 & -sinh\frac{1-c}{T} & cosh\frac{1-c}{T} & 0 \\<br />
0 & 0 & 0 & e^{-\frac{1+c}{T}} \\<br />
\end{array}\right)<br />
\end{displaymath}<br />
<br />