davemoosehead
- 26
- 0
Homework Statement
Which of the following is not an eigenvector for <br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> x \\<br /> y \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> x + y \\<br /> x+ y \\<br /> \end{array} } \right]<br /> ?
A) v = [-2 -2]T
B) v = [1 -1]T
C) v = [1 2]T
D) All are eigenvectors
Homework Equations
Ax = \lambdax
The Attempt at a Solution
My problem is that all eigenvectors I've computed have come from 2x2 matrices. My best guess on starting is
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> -4 \\<br /> -4 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right]<br /> = <br />
but this obviously doesn't work because of the size. How do I find an eigenvalue of a 2x1 matrix? Is it possible? Am I even looking at this correctly?
Edit: I think I've figured it out. First, I constructed the standard matrix for T and got \left[ {\begin{array}{cc}<br /> 1&1 \\<br /> 1&1 \\<br /> \end{array} } \right]
Then I used Ax = \lambdax with the vectors given to find the eigenvalues. Letter C didn't have an eigenvalue, so that is the answer.
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&1 \\<br /> 1&1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> -4 \\<br /> -4 \\<br /> \end{array} } \right] = 2<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right]<br />
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&1 \\<br /> 1&1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> 0 \\<br /> 0 \\<br /> \end{array} } \right] = 0<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right]<br />
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> 2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&1 \\<br /> 1&1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> 2 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> 3 \\<br /> 3 \\<br /> \end{array} } \right] = ? <br />
Last edited: