Finding the eigenvectors for T()

  • Thread starter Thread starter davemoosehead
  • Start date Start date
  • Tags Tags
    Eigenvectors
davemoosehead
Messages
26
Reaction score
0

Homework Statement



Which of the following is not an eigenvector for <br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> x \\<br /> y \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> x + y \\<br /> x+ y \\<br /> \end{array} } \right]<br /> ?

A) v = [-2 -2]T
B) v = [1 -1]T
C) v = [1 2]T
D) All are eigenvectors

Homework Equations



Ax = \lambdax

The Attempt at a Solution


My problem is that all eigenvectors I've computed have come from 2x2 matrices. My best guess on starting is
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> -4 \\<br /> -4 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right]<br /> = <br />

but this obviously doesn't work because of the size. How do I find an eigenvalue of a 2x1 matrix? Is it possible? Am I even looking at this correctly?

Edit: I think I've figured it out. First, I constructed the standard matrix for T and got \left[ {\begin{array}{cc}<br /> 1&amp;1 \\<br /> 1&amp;1 \\<br /> \end{array} } \right]
Then I used Ax = \lambdax with the vectors given to find the eigenvalues. Letter C didn't have an eigenvalue, so that is the answer.
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&amp;1 \\<br /> 1&amp;1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> -4 \\<br /> -4 \\<br /> \end{array} } \right] = 2<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right]<br />
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&amp;1 \\<br /> 1&amp;1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> 0 \\<br /> 0 \\<br /> \end{array} } \right] = 0<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right]<br />
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> 2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&amp;1 \\<br /> 1&amp;1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> 2 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> 3 \\<br /> 3 \\<br /> \end{array} } \right] = ? <br />
 
Last edited:
Physics news on Phys.org
davemoosehead said:

Homework Statement



Which of the following is not an eigenvector for <br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> x \\<br /> y \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> x + y \\<br /> x+ y \\<br /> \end{array} } \right]<br /> ?

A) v = [-2 -2]T
B) v = [1 -1]T
C) v = [1 2]T
D) All are eigenvectors

Homework Equations



Ax = \lambdax

The Attempt at a Solution


My problem is that all eigenvectors I've computed have come from 2x2 matrices. My best guess on starting is
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> -4 \\<br /> -4 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right]<br /> = <br />

but this obviously doesn't work because of the size. How do I find an eigenvalue of a 2x1 matrix? Is it possible? Am I even looking at this correctly?

Edit: I think I've figured it out. First, I constructed the standard matrix for T and got \left[ {\begin{array}{cc}<br /> 1&amp;1 \\<br /> 1&amp;1 \\<br /> \end{array} } \right]
Then I used Ax = \lambdax with the vectors given to find the eigenvalues. Letter C didn't have an eigenvalue, so that is the answer.
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&amp;1 \\<br /> 1&amp;1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> -4 \\<br /> -4 \\<br /> \end{array} } \right] = 2<br /> \left[ {\begin{array}{cc}<br /> -2 \\<br /> -2 \\<br /> \end{array} } \right]<br />
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&amp;1 \\<br /> 1&amp;1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> 0 \\<br /> 0 \\<br /> \end{array} } \right] = 0<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> -1 \\<br /> \end{array} } \right]<br />
<br /> T \left(<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> 2 \\<br /> \end{array} } \right] \right) = <br /> \left[ {\begin{array}{cc}<br /> 1&amp;1 \\<br /> 1&amp;1 \\<br /> \end{array} } \right]<br /> \left[ {\begin{array}{cc}<br /> 1 \\<br /> 2 \\<br /> \end{array} } \right] = <br /> \left[ {\begin{array}{cc}<br /> 3 \\<br /> 3 \\<br /> \end{array} } \right] = ? <br />

Your answer is correct, but you have made extra work for yourself in this problem. You didn't need to find a matrix representation for this transformation. All you needed to do was determine whether T(x) is equal to a scalar multiple of x.
For example, T(-2, -2) = (-4, -4) = 2*(-2, -2).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top