Finding the equations of state for a system (entropy)

ragnarokmonk
Messages
1
Reaction score
0

Homework Statement



Suppose the entropy of a system is given by the relation:

S(E,V,N) = a(E,V,N)^(1/3)

Determine three equations of state for this system

Homework Equations



there were no equations given on the sheet but I'm assuming that this might help.

dS=(1/T)*dE+(p/T)*dV+Ʃμ*dN for a quasistatic process

The Attempt at a Solution



So with this, i was trying to determine the partial derivative of the function a(E,V,N)^(1/3). Similar to the way we can find:

(∂S(E,V,N)/∂E)*dE+(∂S(E,V,N)/∂V)*dV+Ʃ(∂S(E,V,N)/∂N)*dN

through partial differentials for S(E,V,N). The only problem is finding the partial differential when there's a power of 1/3 involved. How do i go about obtaining a result like the one above? Also, do i relate it to the equation dS to obtain the equations of state, or am i looking in the wrong direction?

Thanks for all the help everyone.
 
Physics news on Phys.org
I think you're on the right track. Use the chain rule. For example, ∂S/∂E =( dS/da)(∂a/∂E)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top