Finding the First Derivative of a Complicated Expression

frosty8688
Messages
126
Reaction score
0
1. Simplify the derivative



2. y = \frac{\sqrt{1-x^{2}}}{x}



3. f'(x) = \frac{x*\frac{-2x}{2\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}}{x^{2}}=\frac{-x^{2}-\sqrt{1-x^{2}}}{x^{2}\sqrt{1-x^{2}}} I just don't know how to simplify this further.
 
Physics news on Phys.org
frosty8688 said:
1. Simplify the derivative

2. y = \frac{\sqrt{1-x^{2}}}{x}

3. f'(x) = \frac{x*\frac{-2x}{2\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}}{x^{2}}=\frac{-x^{2}-\sqrt{1-x^{2}}}{x^{2}\sqrt{1-x^{2}}} I just don't know how to simplify this further.
You simplified ##\displaystyle \ \frac{\displaystyle x\frac{-2x}{2\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}}{x^{2}} \ ## incorrectly.
 
So it would be -x^{2} over the square root. So how do I find the second derivative of \frac{\frac{-x^{2}}{\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}}{x^{2}} Do I use the product rule or quotient rule. Which is easier?
 
Last edited:
Multiply by ##\displaystyle \ \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}} \ .##
 
SammyS said:
Multiply by ##\displaystyle \ \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}} \ .##

I already did that and came out with \frac{-1}{x^{2}\sqrt{1-x^{2}}}
 
How do I take the second derivative?
 
frosty8688 said:
How do I take the second derivative?
You can use the quotient rule. To differentiate the denominator use the product rule. Alternatively, rewrite it as a product of two terms with negative exponents and just use the product rule.
 
Here is what I have \frac{\frac{-x}{\sqrt{1-x^{2}}}-\frac{x^{3}}{(1-x^{2})^{3/2}}} x^{2} + \frac{2}{x^{3}} The squared on the top is supposed to go with the x on the bottom.
 
frosty8688 said:
Here is what I have \frac{\frac{-x}{\sqrt{1-x^{2}}}-\frac{x^{3}}{(1-x^{2})^{3/2}}} x^{2} + \frac{2}{x^{3}} The squared on the top is supposed to go with the x on the bottom.
You mean \displaystyle \ \ \frac{\displaystyle \frac{-x}{\sqrt{1-x^{2}}}-\frac{x^{3}}{(1-x^{2})^{3/2}}} {x^{2}} + \frac{2}{x^{3}}\ \ ?

I don't see how that can possibly be correct.

Please show some steps.
 
  • #10
SammyS said:
You mean \displaystyle \ \ \frac{\displaystyle \frac{-x}{\sqrt{1-x^{2}}}-\frac{x^{3}}{(1-x^{2})^{3/2}}} {x^{2}} + \frac{2}{x^{3}}\ \ ?

I don't see how that can possibly be correct.

Please show some steps.

Here is how I got that answer \frac{\frac{-2x^{3}}{2(1-x^{2})^{3/2}}}+\frac{2x}{2\sqrt{1-x^{2}}}-\frac{2x}{\sqrt{1-x^{2}}}{x^{2}}-2\frac{\frac{-x^{2}}{\sqrt{1-x^{2}}}}-\sqrt{1-x^{2}}{x^{3}} = \frac{\frac{-2x^{3}}{2(1-x^{2})^{3/2}}}-\frac{x}{\sqrt{1-x^{2}}}{x^{2}}-2\frac{\frac{-x^{2}}{\sqrt{1-x^{2}}}}-\sqrt{1-x^{2}}{x^{3}} = \frac{\frac{-x}{\sqrt{1-x^{2}}}}-\frac{x^{3}}{(1-x^{2})^{3/2}}{x^{2}}-2\frac{\frac{-x^{2}}{\sqrt{1-x^{2}}}}-\sqrt{1-x^{2}}{x^{3}}=\frac{\frac{-x}{\sqrt{1-x^{2}}}}-\frac{x^{3}}{(1-x^{2})^{3/2}}{x^{2}}+\frac{2}{x^{3}} That is how I got the answer. The + sign in the first part should be in the numerator and the x^2 should be in the denominator. Same thing with the sign in the second half of the first part and the sqrt should be in the numerator with the x^3 on the bottom, same thing in the second part and third part and last part. Sorry it got messed up.
 
  • #11
It doesn't need to be that complicated. Write the first derivative as ##-x^{-2}(1-x^2)^{-\frac 12}## and differentiate using the product rule. Hint: every term in the answer ought to have a factor like ##(1-x^2)^{n-\frac 12}##, some integer n. I'd guess that's how SammyS knew your answer could not be right.
 
Back
Top