Finding the Inverse of a Modular Matrix

  • Thread starter Thread starter roam
  • Start date Start date
  • Tags Tags
    Inverse Matrix
roam
Messages
1,265
Reaction score
12

Homework Statement



[PLAIN]http://img844.imageshack.us/img844/2975/31668142.gif

The Attempt at a Solution



I know the inverse would be of the form:

M^{-1}_{a,p}=\frac{1}{1-(p-1)(10 \bmod\ p)} \begin{bmatrix} 1&-(a \bmod\ p)\\ -(p-1)& 1 \end{bmatrix}

Where 1-(p-1)(10 \bmod\ p) is the determinant. Whatever this equals to, I must find its inverse.

But how does one evaluate 10 \bmod\ p and (p-1) when p \in \{ 3,7 \}? Do we take '10 mod 7' or '10 mod 3'? :confused: I appreciate if anyone could show me that.
 
Last edited by a moderator:
Physics news on Phys.org
I believe you are supposed to compute two inverses, for p = 3 and for p = 7 (with a = 10 in both cases).
 
losiu99 said:
I believe you are supposed to compute two inverses, for p = 3 and for p = 7 (with a = 10 in both cases).

Are you sure? Because the question apparently asks for one inverse...

But in the case we need 2 inverses

10 mod 3 = 1 & (p-1)=2
10 mod 7 = 3 & (p-1)=6

The inverses will be

M^{-1}_{10,3}=1^{-1} \begin{bmatrix} 1&-1\\ -2& 1 \end{bmatrix}

M^{-1}_{10,7}=3^{-1} \begin{bmatrix} 1&-3\\ -6& 1 \end{bmatrix}

Inverse of 1 is 1, and the inverse of 3 is 5 [since (3.5) mod 7 = 1]. When the arithmetic is done modulo 3 and modulo 7 respectively the inverse matrices are:

M^{-1}_{10,3}=\begin{bmatrix} 1&2\\ 1& 1 \end{bmatrix}

M^{-1}_{10,3}=\begin{bmatrix} 5.1&5.4\\ 5.1& 5.1 \end{bmatrix}=\begin{bmatrix} 5&6\\ 5& 5 \end{bmatrix}

Is this correct then?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top