tehno
- 375
- 0
Let:
a_{1}=a_{2}=1;a_{n+2}=a_{n+1}+a_{n};n\geq 1
Let f_{n} be the last digit in decimal notation
of Fibonacci number a_{n}.
Find:
\lim_{n\to\infty}\frac{a_{1}+a_{2}+...+a_{n}}{n}
a_{1}=a_{2}=1;a_{n+2}=a_{n+1}+a_{n};n\geq 1
Let f_{n} be the last digit in decimal notation
of Fibonacci number a_{n}.
Find:
\lim_{n\to\infty}\frac{a_{1}+a_{2}+...+a_{n}}{n}
Last edited: