Finding the Limit of a Summation with Infinite Terms

  • Thread starter Thread starter cleopatra
  • Start date Start date
  • Tags Tags
    Sum
cleopatra
Messages
45
Reaction score
0

Homework Statement



lim "sum"(1/n^2)
n→∞ n=0

Can you help me find the final solution?


The Attempt at a Solution



lim (1/n^2) = 0 ?
n-∞

But the "sum" confuses
 
Physics news on Phys.org
Lim_{n \rightarrow \infty} \Sigma \left( \frac{1}{n^{2}}\right) So sum each successive term \frac{1}{1}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}...
 
Last edited:
There must be a way to find a final solution (with only one number).
Anybody?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top