I Finding the Matrix O for a 4x4 Operator Acting on a 4x1 Vector

  • I
  • Thread starter Thread starter MrMuscle
  • Start date Start date
  • Tags Tags
    Matrix Operator
MrMuscle
Messages
12
Reaction score
1
TL;DR Summary
I have a vector A, and when I apply operator O on it, I get vector B.
I know A and B, but don't know how to find O.
I have a 4x4 operator O. I apply it on a 4x1 vector A. Let's say A =[0.7; 0.4 ; 0.4; 0.3]. When O acts on A, I get B.

Let's say B=[0.74 ; 0.56; 0.08 ; 0.36]. The problem is I don't know how to find O. Can you please help me. My basis are [1 ; 0 ; 0; 0], [0;1 ; 0 ;0] ... and so on.

Thanks in advance!
 
Physics news on Phys.org
You need to know the results for another three linearly independent vectors in order to determine O uniquely.
 
  • Like
Likes MrMuscle
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top