Finding the maximum power delivered from a baterry

pentazoid
Messages
142
Reaction score
0

Homework Statement



A battery of emf [insert symbol for emf here] and internal resistance is hooked up to a variable "load" resistance R. If you want to deliever the maximum possible power to the load, what resistance should you choose?(You can't change the emf and r, of course).

Homework Equations



P=I^2*R=V^2/R
Possibly V=[insert symbol for emf here]-Ir

The Attempt at a Solution



I think what I should do is differentiate the Power with respect to the variable load R and sint dP/dR =0

P=V^2/R=([insert symbol for emf here]-Ir)^2/R
 
Physics news on Phys.org
Hi pentazoid! :wink:

(what's "sint"? :confused:)
pentazoid said:
I think what I should do is differentiate the Power with respect to the variable load R and sint dP/dR =0

P=V^2/R=([insert symbol for emf here]-Ir)^2/R

Looks good! :smile:
 
tiny-tim said:
Hi pentazoid! :wink:

(what's "sint"? :confused:)

sorry , I meant to say since.
Looks good! :smile:

seriously?
 
pentazoid said:

Homework Statement



A battery of emf [insert symbol for emf here] and internal resistance is hooked up to a variable "load" resistance R. If you want to deliever the maximum possible power to the load, what resistance should you choose?(You can't change the emf and r, of course).

Homework Equations



P=I^2*R=V^2/R
Possibly V=[insert symbol for emf here]-Ir

The Attempt at a Solution



I think what I should do is differentiate the Power with respect to the variable load R and sint dP/dR =0

P=V^2/R=([insert symbol for emf here]-Ir)^2/R

This is correct but the current I depends on R as well so this not yet in a useful form.

I think it's simpler to use P = R I^2 with I = {\cal E} /(R+r). Now differentiate wrt R, set to zero and solve for R.
 
nrqed said:
This is correct but the current I depends on R as well so this not yet in a useful form.

I think it's simpler to use P = R I^2 with I = {\cal E} /(R+r). Now differentiate wrt R, set to zero and solve for R.

I'm trying to solve this problem but I'm having a hard time figuring out why I = (emf)/(r+R). Isn't V = emf when the conductivity is infinite? How is it infinite (or very big) in this case if the resistance is r.
 
Marioqwe said:
I'm trying to solve this problem but I'm having a hard time figuring out why I = (emf)/(r+R). Isn't V = emf when the conductivity is infinite?

To be honest, I don't know what you're talking about.

Kirchoff's voltage law (KVL) says that the sum of the voltages around a closed loop in a circuit has to equal zero (this is just the conservation of energy, when you think about it). In other words, the voltage drop across the two resistors has to be equal to the voltage across the battery terminals (which is just the emf). Everything is in series, so current through the circuit is the total voltage over the total resistance, hence I = ε/(r+R).
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top