Finding the Rate of Change of a Spherical Balloon's Diameter

  • Thread starter Thread starter skivail
  • Start date Start date
  • Tags Tags
    Sphere Volume
skivail
Messages
12
Reaction score
0
i need to be able to solve a problem like this for a test on monday. please solve, showing work, so i can trace your steps to teach myself.

a spherical balloon is inflated so that its volume is increasing at the rate of 6ft^3/minute. how fast is the diameter of the balloon increasing when the radius is 1 feet? reminder: volume of a sphere= 4/3 (pi)r^3
 
Physics news on Phys.org
Just differentiate with respect to time. The left side will be dV/dt and the right side will contain a factor of dr/dt which is rate at which the RADIUS changes. Be sure to rewrite it in terms of the DIAMETER.
 
-Substitute (D(t)/2)^3 for r in V=4/3 (pi)r^3.
-When simplified you get pi/6(D(t))^3.
-Differentiate and you get V'= pi/6[3(D(t))^2] [D'(t)] (implicit diff.)
-plug in the numbers--remember any variable with the ' means it's a rate, a unit over time
- I got 3.8197 ft/min. but if you have an answer key go with that.

I really hope this helps! Good luck on your test!:smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
3
Views
2K
Replies
3
Views
2K
Replies
10
Views
5K
Replies
20
Views
5K
Replies
6
Views
3K
Replies
9
Views
2K
Back
Top