Finding the Residue of an Expression with a Constant

touqra
Messages
284
Reaction score
0
How do you get the residue of this expression:

\frac{1}{(e^z - k)} where k is a constant.
 
Physics news on Phys.org
touqra said:
How do you get the residue of this expression:

\frac{1}{(e^z - k)} where k is a constant.

In what contour? And what is k? Note if k is zero then it becomes 1/e^z which is analytic. But if k!=0 then there is a singularity which depends on the contour.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top