student45
I'm trying to find the sum of this:
<br /> \[<br /> \sum\limits_{n = 0}^\infty {( - 1)^n nx^n } <br /> \]<br />
This is what I have so far:
<br /> \[<br /> \begin{array}{l}<br /> \frac{1}{{1 - x}} = \sum\limits_{n = 0}^\infty {x^n } \\ <br /> \frac{1}{{(1 - x)^2 }} = \sum\limits_{n = 0}^\infty {nx^{n - 1} } = \sum\limits_{n = 1}^\infty {nx^{n - 1} } \\ <br /> \frac{x}{{(1 - x)^2 }} = \sum\limits_{n = 1}^\infty {nx^n } \\ <br /> \end{array}<br /> \]<br />
So how do I get the (-1)^n part in there? Any suggestions would be really helpful. Thanks.
<br /> \[<br /> \sum\limits_{n = 0}^\infty {( - 1)^n nx^n } <br /> \]<br />
This is what I have so far:
<br /> \[<br /> \begin{array}{l}<br /> \frac{1}{{1 - x}} = \sum\limits_{n = 0}^\infty {x^n } \\ <br /> \frac{1}{{(1 - x)^2 }} = \sum\limits_{n = 0}^\infty {nx^{n - 1} } = \sum\limits_{n = 1}^\infty {nx^{n - 1} } \\ <br /> \frac{x}{{(1 - x)^2 }} = \sum\limits_{n = 1}^\infty {nx^n } \\ <br /> \end{array}<br /> \]<br />
So how do I get the (-1)^n part in there? Any suggestions would be really helpful. Thanks.