Finding the Value of an Integral with Limited Information: An Example

  • Thread starter Thread starter jnimagine
  • Start date Start date
  • Tags Tags
    Integral
jnimagine
Messages
176
Reaction score
0
suppose that f is continuous and (integral]0->2 f(x)dx = 6. Then (integral]0 -> pi/2 f(2sinb)cosbdb=?

ok... I'm totally lost here... how do u solve this without knowing what f(x) is..?
 
Physics news on Phys.org
Do you know how to change variables in integrals? In the second integral, change variables to y = 2sinb.
 
dx said:
Do you know how to change variables in integrals? In the second integral, change variables to y = 2sinb.

so if y = 2sinb then dy = 2cosbdb hence 1/2(integral]0->2f(y)dy) = 1/2(6) = 3
Is this the answer?
 
Yes.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top