Finding Valid v in Z2 for d(v;11011) = 3 | Error Correcting Codes HW

  • Thread starter Thread starter johnaphun
  • Start date Start date
  • Tags Tags
    Error
johnaphun
Messages
12
Reaction score
0

Homework Statement



Find all vE(Z2)5 for which d(v;11011) = 3

Homework Equations



I'm sure this one isn't too difficult, I'm just unsure how to go about attempting it
 
Physics news on Phys.org
Don't worry guys, I've figured it out!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top