Finding y_2(x) using Reduction of Order

  • Thread starter Thread starter s3a
  • Start date Start date
  • Tags Tags
    Reduction
s3a
Messages
814
Reaction score
8

Homework Statement


Find y_2(x) given that y_1(x) = e^x for (x – 1)y'' – xy' + y = sin x.

Homework Equations


Reduction of order method.

The Attempt at a Solution


My attempt is attached as MyWork.jpg. Is what I did so far 100% correct? Assuming it is, what do I do now?

Any help in figuring this out would be greatly appreciated!
Thanks in advance!
 

Attachments

  • MyWork.jpg
    MyWork.jpg
    61.2 KB · Views: 450
Physics news on Phys.org
I figured it out.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top