Finite abelian group into sequence of subgroups

jav
Messages
34
Reaction score
0
G finite abelian group

WTS: There exist sequence of subgroups {e} = Hr c ... c H1 c G
such that Hi/Hi+1 is cyclic of prime order for all i.

My original thought was to create Hi+1 by reducing the power of one of the generators of Hi by a prime p. Then the order of Hi/Hi+1 would be p, but not necessarily cyclic.

I also know that a simple finite abelian group is cyclic of prime order, but don't know how to construct simple cosets.

(kiHi+1)(hiHi+1)(kiHi+1)-1 = (hiHi+1) where hi c Hi, ki c Ki c Hi

since G abelian implies the inverse coset commutes.

Then, in order to prove Hi/Hi+1 is simple would be equivalent to showing that the trivial subgroup and itself are the only subgroups. If that were true, then there would only be one valid subgroup of G in the sequence. Ie. the sequence would look like {e} c H c G.

What am I missing here?
 
Last edited:
Physics news on Phys.org
there are a couple of "easier" cases you might want to look into first:

|G| = pq, p,q distinct primes.

|G| = pk, p a prime.

the second case is "harder", although you may have proved both of these already if you have covered the sylow theorems.

by the way, any group of prime order is necessarily cyclic (why?).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top