Finite Difference Method, Leapfrog (2,4) CFL Condition

wrechtin
Messages
4
Reaction score
0
Hi.

I'm trying to determine the CFL condition for the fourth-order leapfrog scheme. I'm finding 2 as what's published, which does not match what I'm getting.

Does anyone know where I can find a von Neumann (or Fourier) stability analysis of the leapfrog (2,4) scheme (so I can compare my work) and/or a reputable book dedicated towards von Neumann (or Fourier) stability analysis?

Thank you for your time,
Will
 
Last edited:
Physics news on Phys.org
When you say "your calculations", do you mean numerical experiments with a finite number of mesh points and some specific boundary conditions? Or do you mean your own attempt at a theoretical stability analysis?

If you mean numerical experiments, I would not be surprised that 2 is the limit for an infinitely large mesh. Try mesh sizes of n, 2n, 4n, 8n... for some reasonable value of n, and see what happens.
 
Hi AlephZero.

Thank you for the reply. No, I'm not referring to numerical experiments. I'm referring to the theoretical CFL condition and to a very basic application of von Neumann stability analysis where u^m_n = (g^m)(exp(i*xi_n*h)) and the scheme is u^(m+1)_n = u^(m-1)_n + lambda((4/3)(u^m_(n+1) - u^m_(n-1)) - (1/6)(u^m_(n+2) - u^m_(n-2)). I would prefer to determine the theoretical CFL condition, so I know what step sizes to gather my data in for preliminary confirmation of fitting the predicted with the observed and then subsequent experiments. I could just accept what's already been published, but I want to make sure I have a solid understanding of what's in front of me before I progress.

Are you implying the published CFL condition is referring to actual numerical experiments or is it theoretical?

Thank you for your time,
Will
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top