Finite field with prime numbers

Glass
Messages
24
Reaction score
0

Homework Statement


If F is a finite field show that there is a prime p s.t. (p times)a+a+...+a=0 for all a in the field


Homework Equations





The Attempt at a Solution


Well I managed to prove that there must be an a in F s.t. (prime number, call p, times)a+a+...+a=0 but I can't seem to prove that for every a in F (p times)a+a+...+a=0 (This is the only approach I could think of).
 
Physics news on Phys.org
If you showed that pa=0 for some a, then pb = (pa)(a^-1 b) = 0 as well.

Another approach goes as follows. Define a homomorphism f from Z (the ring of integers) into F by n -> n*1. Now Z/ker(f) is a subring of F, hence an integral domain, and consequently ker(f) is a prime ideal of Z. If F is finite, f cannot be an injection, so ker(f) isn't trivial, and is thus of the form pZ for some prime p. This means Z/pZ sits inside F, and in particular p=0 in F.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top