Finite projective plane properties

quila
Messages
7
Reaction score
0

Homework Statement


Let P be a finite projective plane so that all lines in P have the same number of points lying on them; call this number n+1, with n greater than or equal to 2. Show the following:

a) each point in P has n+1 lines passing through it.
b)the total number of points in P is n^2+n+1.
c) the total number of lines in P is n^2+n+1

Homework Equations





The Attempt at a Solution


I created a model of P using n=2. I showed that the number of points in P is 7 and the number of lines in P is 7. I tried to look for a way to generalize this problem but I am having trouble.
 
Physics news on Phys.org
Have you done the same exercise for affine planes? Can you use that info?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top