Finite Temperature Density Matrix Calculation

bowlbase
Messages
145
Reaction score
2

Homework Statement


Consider the Hamiltonian ##H=\begin{bmatrix} 0& \frac{-iw}{2}\\ \frac{iw}{2} & 0 \end{bmatrix}##
Write the finite temperature density of the matrix ##\rho(T)##

Homework Equations


##\beta=\frac{1}{kT}##

The Attempt at a Solution


The initial part of the problem had me find the eigenvectors and eigenvalues. I got ##\lambda=\pm\frac{w}{2}## and eigenvectors ##v_1=(-i, 1)## and ##v_1=(i, 1)##

Not quite sure what to do with it from here. I know that ##\rho=e^{-\beta E_1} | \psi_1 \rangle \langle \psi_1 |+e^{-\beta E_2} | \psi_2 \rangle \langle \psi_2 |##

I think I remember that the eigenvalues are suppose to be ##E_{1,2}##. But I don't know what ##\psi_{1,2}## are suppose to be.

Further, my notes show that once I have the matrix I should have a fraction that looks something like ##\frac{1}{2z}## where ##z## is the sum ##z=e^{-\beta E_1}+e^{-\beta E_2}##
 
Physics news on Phys.org
|\psi_1 \rangle and |\psi_2 \rangle are normalized eigenvectors of the Hamiltonian. You have the eigenvectors, you just need to normalize them.
About the factor of \frac{1}{2z}, the density operator \rho should have unit trace. But I don't think there should be a factor \frac 1 2 there!
 
I got it figured it out. I just couldn't find it in my textbook. Turns out in was in recommended reading I guess. Thanks for the help though.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top