First order linear differential equation

Mikesgto
Messages
18
Reaction score
0

Homework Statement



11(t+1)dy/dt-7y=28t y(0)=13

Homework Equations


The Attempt at a Solution


I got µ(x)=1/(t+1)^(7/11)
and then used

28/11(t+1)^(7/11)*integral of t/(t+1)^(18/11) dt.
And that's where I'm stuck.
 
Physics news on Phys.org
Is your difficulty in the integration?

Integration by parts should remedy said problem I believe.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top