KillerZ
- 116
- 0
Homework Statement
I haven't done ODEs in a few years and I am trying to do this equation:
m_{Hg}C_{p,Hg}\frac{dT_{Hg}}{dt} = Q
Q = hA(T_{air} - T_{Hg})
T_{Hg}(t = 0) = 20
I need to find T_{Hg}(t=590)
Homework Equations
The Attempt at a Solution
h, A, m_{Hg}, C_{p,Hg}, T_{air} are all constants
\frac{dT_{Hg}}{dt} = \frac{hA(T_{air} - T_{Hg})}{m_{Hg}C_{p,Hg}}
\frac{m_{Hg}C_{p,Hg}}{hA(T_{air} - T_{Hg})} dT_{Hg} = dt
\int\frac{m_{Hg}C_{p,Hg}}{hA(T_{air} - T_{Hg})} dT_{Hg} = \int dt
\frac{-m_{Hg}C_{p,Hg}}{hA}\int\frac{1}{(-T_{air} + T_{Hg})} dT_{Hg} = \int dt
\frac{-m_{Hg}C_{p,Hg}}{hA} ln|T_{Hg} - T_{air}| = t + c
ln|T_{Hg} - T_{air}| = \frac{t + c}{\frac{-m_{Hg}C_{p,Hg}}{hA}}
T_{Hg} - T_{air} = e^{t/\frac{-m_{Hg}C_{p,Hg}}{hA}}e^{c/\frac{-m_{Hg}C_{p,Hg}}{hA}}
e^{c/\frac{-m_{Hg}C_{p,Hg}}{hA}} = c
T_{Hg} - T_{air} = ce^{t/\frac{-m_{Hg}C_{p,Hg}}{hA}}
T_{Hg} = ce^{t/\frac{-m_{Hg}C_{p,Hg}}{hA}} + T_{air}
T_{Hg}(t = 0) = 20
T_{air} = -7
h = 3.9
A = 0.00176
C_{p,HG} = 139.0908
m_{Hg} = 0.05
20 = ce^{0/\frac{-(0.05)(139.0908)}{(3.9)(0.00176)}} + (-7)
c = 27
T_{Hg} = 27e^{t/\frac{-m_{Hg}C_{p,Hg}}{hA}} + T_{air}
T_{Hg}(t=590)
T_{Hg}(t=590) = 27e^{590/\frac{-(0.05)(139.0908)}{(3.9)(0.00176)}} + (-7)
T_{Hg}(t=590) = 8.0822