First order perturbation theory problem

Bowenwww
Messages
25
Reaction score
0
Ok so I have a classic particle in a box problem. If a particle in a box, the states of which are given by: ψ = (√2/L) * sin(nπx/L) where n=1,2,3...

is perturbed by a potential v(x) = γx , how do I calculate the energy shift of the ground state in first order perturbation

I'm guessing that the energy shift is given by the expectation value of this perturbation but apart from that I'm stumped.

Thanks in advance guys
 
Physics news on Phys.org
hint: you should calculate the expectation of the perturbation with respect to which state?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top