Fisher matrix for multivariate normal distribution

hdb
Messages
3
Reaction score
0
The fisher information matrix for multivariate normal distribution is said at many places to be simplified as:
\mathcal{I}_{m,n} = \frac{\partial \mu^\mathrm{T}}{\partial \theta_m} \Sigma^{-1} \frac{\partial \mu}{\partial \theta_n}.\
even on
http://en.wikipedia.org/wiki/Fisher_information#Multivariate_normal_distribution"
I am trying to come up with the derivation, but no luck so far. Does anyone have any ideas / hints / references, how to do this?

Thank you
 
Last edited by a moderator:
Physics news on Phys.org
Using matrix derivatives one has D_x(x^T A x) = x^T(A+A^T) from which it follows that D_{\theta} \log p(z ; \mu(\theta) , \Sigma) = (z-\mu(\theta))^T \Sigma^{-1} D_{\theta} \mu(\theta) For simplicity let's write D_{\theta} \mu(\theta) = H The FIM is then found as J = E[ ( D_{\theta} \log p(z ; \mu(\theta) , \Sigma))^T D_{\theta} \log p(z ; \mu(\theta) , \Sigma)] = E[ H^T R^{-1} (z - \mu(\theta))^T (z - \mu(\theta)) R^{-1} H] = H^T R^{-1} R R^{-1} H = H^T R^{-1} H [\tex] which is equivalent to the given formula. Notice that this formula only is valid as long as \Sigma [\tex] does not depend on \theta [\tex]. I'm still struggling to find a derivation of the more general case where also \Sigma [\tex] depends on \theta [\tex].<br /> <br /> For some reason my tex code is not correctly parsed. I cannot understand why.
 
Actually the general proof can apparently be found in Porat & Friedlander: Computation of the Exact Information Matrix of Gaussian Time Series with Stationary Random Components, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol ASSP-34, No. 1, Feb. 1986.
 
edmundfo said:
R^{-1} H] = H^T R^{-1} R R^{-1} H = H^T R^{-1} H [\tex]

For some reason my tex code is not correctly parsed. I cannot understand why.

For one thing, you're using the back slash [\tex] instead of the forward slash [/tex] at the end of your code.
 
edmundfo said:
Actually the general proof can apparently be found in Porat & Friedlander: Computation of the Exact Information Matrix of Gaussian Time Series with Stationary Random Components, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol ASSP-34, No. 1, Feb. 1986.
Thank you for the answers, in between I have found an another reference, which is a direct derivation of the same result, for me this one seems to be easier to interpret:

Klein, A., and H. Neudecker. “A direct derivation of the exact Fisher information matrix of Gaussian vector state space models.” Linear Algebra and its Applications 321, no. 1-3
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top