Highwind said:
I understand what you're at. I also think that it is true, but
the only gap in the argumentation is this:
You take a circle (having constant curvatrue) and another circle (also having constant curvature) in another R^2. Why exactly has the product of those circles (in the product of those R^2) also constant curvature?
As I mentioned, products of constantly curved objects do not necessarily have constant curvature (as can be seen in the case of the doughnut torus in R^3).
I don't think that MW is arguing that. As hinted by Hurkyl, the argument is that the embedding in R^2xR^2 is homogeneous under a subgroup of isometries in R^4, i.e. rotations about the origin in either copy of R^2, and compositions thereof. Thus, they are isometries of the induced metric on T^2, i.e. they preserve the induced metric. So, they preserve the curvature (take your pick on which kind: Riemannian, sectional, Gaussian, etc.). In particular, they preserve the sectional curvature of the embedded torus, which on a Riemann surface is the same as the Gaussian curvature, i.e. the Gaussian curvature is constant.
As argued by MW before, we know by Gauss-Bonnet that the integral of the Gaussian curvature over the embedded torus is zero, and it is the same number at each point. So, the Gaussian curvature is zero everywhere.
Another way to see it is that with the R^4 embedding of the torus, you've got an basis of its tangent bundle, orthonormal with respect to the induced metric and whose Lie bracket of each other is zero, namely,
X1= -(sin u)e1 + (cos u) e2,
X2= -(sin v) e3 + (cos v) e4,
at the point (cos u, sin u, cos v, sin v) of the embedding. The existence of this guarantees that the embedding is flat, since it means that we locally can put the induced metric in the form: ds^2= dx^2+dy^2, for a local coordinate system (x,y) on the embedded torus .