your example is not quite correct. Using the left hand rule, you must have your index finger representing the magnetic field, your middle finger represents current, and your thumb represents the force on the wire. So, by the left-hand rule for your example, the wire will move down.
And for the right-hand rule, you must use the current as your index finger, the magnetic field as your middle finger, and the force as your thumb. So again, the wire will move down. So yes, both rules are essentially saying the same thing. This webpage gives a nice explanation:
http://en.wikipedia.org/wiki/FBI_mnemonics
Also, you can use any cyclic permutation, and it will still give you the right answer for the directions. So if we say (a,b,c) means (thumb, index finger, middle finger) then using the right-hand rule, we can use (F,I,B) OR (I,B,F) OR (B,F,I) (where F is force, I is current, and B is magnetic field). Note that (F,I,B) is the most commonly used way to use the right-hand rule. But you can use any of these ways, and you get the correct directions.
So, also, if we again say (a,b,c) means (thumb, index finger, middle finger), then using the left-hand rule, we can use (F,B,I) OR (B,I,F) OR (I,F,B) Any of these methods will give you the correct directions, But (F,B,I) is the most commonly used one (which is called the 'FBI rule' if you read the wikipedia page). If you are familiar with cross-product, it will make more sense. But if you haven't learned about cross product yet, then that is something to look forward to :)
Now, having said all that, sometimes people use the right-hand rule to talk about the velocity of a wire moving through a magnetic field, and the induced current. This case is different from the previous case, because in the previous case, we were considering a wire which already has current going through it, and the force on that wire due to the magnetic field.
When people talk about the induced current due to a wire moving through a magnetic field, we must use the rule (v,B,I) for the right-hand (i.e. velocity of the wire is the thumb, magnetic field is the index finger and induced current is middle finger). Now we can also use a left-hand rule for this case if we want to. For the left-hand, we must use the rule (B,v,I) so using left-hand, the magnetic field is the thumb, the velocity of the wire is the index finger, and the induced current is the middle finger. And also, a cyclic permutation will also work.