Fluid mechanics: Separation surface of a source in a parallel flow (3D)

steem84
Messages
13
Reaction score
0
Hello,

I have the following problem with respect to fluid mechanics:

A source of strength Q is in a 3D space and subjected to a parallel flow U along the x-axis. The position of the source is at (xq,yq,zq). This will lead to the following velocity potential in cartesian and cylindrical coordinates

figure 1

With the velocity in the x-direction determined to be

figure 2

To calculate the surface rho(x) which separates the fluid (coming from the source) from the fluid, (coming from the parallel flow), one can use the law of volume conservation (because of constant density). In that body which is described by that surface, the flow through any plane x=constant should equal to Q

figure 3

I know this is the correct way to calculate the separation surface, but from this point I can not go further: how do I solve the integral? Or can I use some trick?

Btw: sorry for the clumsy format, but I can’t LateX

Thanks!

Steven

If this is the wrong sub-forum, please let me know
 

Attachments

  • pf1.PNG
    pf1.PNG
    2.9 KB · Views: 461
  • pf2.PNG
    pf2.PNG
    1.6 KB · Views: 479
  • pf3.PNG
    pf3.PNG
    5.3 KB · Views: 474
Physics news on Phys.org
Figure 3 shows an integration with respect to rho and theta then shows an integral with respect to rho after integrating with with respect to theta. This second expression should not have a theta term, namely cos(theta - thetaq). This is a single variable integral with two independent variables. Evaluate the first integral for theta taking into account the cosine term.
 
yes, that does make sense. Thank you
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top