Fluids PDE Problem: Understanding the Elimination of c_1 in Boundary Condition

  • Thread starter Thread starter member 428835
  • Start date Start date
  • Tags Tags
    Fluids Pde
AI Thread Summary
The discussion focuses on a fluid dynamics problem involving the potential function $$\psi(r,\theta)$$ for 2D flow past a cylinder. The user questions why the constant $$c_1$$ is not eliminated in the boundary condition, despite the solution simplifying to include only the term involving $$U$$. It is noted that as $$r$$ becomes large, the logarithmic term grows slower than linear terms, which may justify its omission for boundary conditions. The user also seeks clarification on why a constant term does not appear in the solution, suggesting that the logarithmic term's growth is negligible compared to linear terms. The conversation emphasizes the importance of understanding boundary conditions in the context of fluid flow and potential functions.
member 428835
Hi PF!

So my book has boiled the problem down to $$\psi(r,\theta) = c_1 \ln \frac{r}{a}+\sum_{n=1}^\infty A_n\left(r^n-\frac{a^{2n}}{r^n}\right)\sin n\theta$$ subject to ##\psi \approx Ur\sin\theta## as ##r## get big. The book then writes
$$\psi(r,\theta) = c_1 \ln \frac{r}{a}+U\left(r-\frac{a^2}{r}\right) \sin \theta$$ I understand ##A_n=0\, \forall\, n \geq 2## and ##A_1=U## but why isn't ##c_1## eliminated too? To me it seems the natural log does not allow the "boundary condition" to be satisfied.
 
Engineering news on Phys.org
Whats the context of the problem?
 
Fluid flow in 2D passing a cylinder of radius ##a##. The flow satisfies continuity, so ##\nabla \cdot \vec{v} = 0##. Define ##\psi \equiv \nabla \times \vec{v}## so that continuity is satisfied. Then ##v_x = \psi_y## and ##v_y=-\psi_x##. The resulting PDE is then ##\nabla^2 \psi = 0##. Solving this in polar coordinates yields the above solution I posted, the infinite series. In the far wake, velocity in the ##x## direction is constant ##U##, which suggests ##v_x = \psi_y = U \implies \psi = Uy## (I guess I don't understand why there is no constant too, which is to say why isn't this true: ##\psi = Uy + C_0(x)##).
 
Any ideas? My thought process is since ##r## grows much larger than ##\ln r## we may leave the natural logarithm? Can anyone confirm this?
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top