Andy Resnick said:
It very much applies- from your first URL:
"The pressure at a point in a static liquid is due entirely to the weight of liquid (plus the atmosphere) directly above it"
Which is what I have been saying all along. You are neglecting the role of the stopcock/valve in my experiment. When closed, it's a rigid dividing surface- think about what the effect is as fluid drains from the other reservoir, and how that relates to "the weight of liquid directly above it".
It's relatively straightforward. At the opening of each funnel, the pressure (purely from a hydrostatic analysis of the water in the funnel) is equal to ρgh. Note that this is not identical to the weight of the water divided by the cross sectional area of the throat (which would be much greater than ρgh). This is because at every point where the liquid is contacting the walls of the funnel, the walls of the funnel are pushing back on the liquid (an equal and opposite reaction, you could say). However, since this is a hydrostatic analysis, there is no shear between the liquid and wall. As a result, the force must be perpendicular to the wall. In any section of a container in which the diameter is decreasing as you go downwards, the normal to the wall must have an upwards component.
Since the force between the liquid and the wall must be normal to the wall (assuming a hydrostatic problem, again), the force the wall exerts on the liquid has an upwards component. To determine the pressure at the exit, you have to integrate the force all the way around the control volume, then sum the forces and set them equal to zero.
Now, for some surface inclined to the vertical at some angle, the component of the overall pressure force acting upwards is equal to the overall pressure force multiplied by the sin of that angle (since we are defining the angle as relative to the vertical).
To initially simplify the analysis further, I'll first look at the case for which there is a constrained column of water in a container with vertical walls, and a bottom surface inclined to the vertical with some angle (basically, a beveled cylinder or prism). I'll also assume the depth of the water is sufficient such that the difference in depth from one side of the bottom surface to the other is insignificant (basically, consider an infinitesimal sloped element as the base). The weight of the liquid is mg, which is equal to ρghA, in which A is the cross sectional area. Since the bottom section of the tube is inclined however, the area of the inclined region is equal to A/sin(theta), in which theta is the inclination angle to the vertical. The force on this region is equal to P*A/sin(theta). Based on what I've already described above, the vertical component of this is equal to sin(theta)* P*A/sin(theta), which simplifies to P*A. Thus, the vertical component of the pressure force on the inclined surface perfectly balances the weight of the column of water above it by simple fluid statics.
When we consider that the vertical walls in this container could be replaced by a fluid surface and nothing would change about the situation, it can be seen that this situation can be generalized to any situation in which there is a container with fluid and inclined walls. One such case is a funnel.
In a funnel, much of the fluid is directly above an inclined surface. For the same reason as above, any fluid above such a surface has its weight supported by the pressure force on the region of inclined surface directly below it. Thus, the only fluid for which the weight is not fully supported is the fluid directly over the funnel outlet. This column of fluid must necessarily have the same cross sectional area as the funnel outlet. Thus, the pressure at the funnel outlet is equal to the weight of this fluid (ρghA) divided by the area of the outlet (A), giving P = ρgh.
Now, if I take two funnels, each filled to the same level with the same fluid, and attach the outlets of each together with a valve separating them, this clearly shows that the pressure on each side of that valve will be identical, and equal to the density of the fluid multiplied by the gravitational acceleration of the environment in which they reside, multiplied by the height of the free surface of the fluid above the height of the valve. Once again, any time when there is a surface in a static liquid, it can be replaced with a liquid surface at the same pressure and nothing will change about the problem. Therefore, if the valve is removed, it is effectively replacing a solid surface with a liquid surface at the same pressure in this situation, and nothing changes. With two funnels, the pressure is unchanged compared to a single funnel.
Note that all of the analysis to this point assumes a purely static liquid. Thus, there are no inertial effects, nor are there any viscous effects. That is clearly not the case in several of the experiments before. However, for small flow rates and relatively unrestricted piping, it is a reasonable approximation. For example, in your funnels which drain in timescales of minutes, there will not be substantial inertial or viscous effects within the funnel itself.
Now that I've shown from rather basic principles that adding a second funnel does not in fact double the static pressure at the outlet, why does your experiment have a substantially changed flowrate between the various cases?
The answer is in the assumptions. In any real system, especially with flow through a relatively small orifice, there will be substantial viscous losses. These cause a pressure loss through each component, and the magnitude of the loss depends on the specifics of the flow through each element.
In many cases, the loss will primarily happen at one (or a small number of) restricting element. If this is the case, the pressure loss across the restricting element will be very large, while the pressure loss across the other parts of the flow will be minimal. This is what is happening with your setup and with the IV. However, the restrictive component in your setup is prior to the junction (likely the stopcock). As a result, the pressure at the junction is far below the pressure at the bottom of the funnel, and likely very close to ambient (rather than the substantially above ambient pressure that exists at the bottom of the funnel). This means that when both funnels are open, the primary flow restriction (the stopcocks) does not have any more flow through it than it did when the funnels were open separately, since the flow through either individual stopcock is never fed by both funnels.
To illustrate why this is not showing what you believe it is, I'll use a simple numerical example. I'll also assume pressure drop across an element is linearly proportional to flowrate. It isn't, but it will work for the purpose of this example. I'll also assume two identical funnels, rather than the dissimilar ones like you are using.
Suppose that the pressure drop across the stopcock at the bottom of each funnel is 90% of the total pressure loss of the system, and the pressure loss below the junction is 10%. Individually, the funnels drain in 100 seconds. When both funnels are draining simultaneously, the total pressure drop must remain constant, since the outlet pressure and the feed pressure have not changed. However, the flowrate through the area below the junction is now double the flowrate through the stopcocks. Thus, relative to the pressure drop through the stopcocks, the pressure drop through the junction must have doubled. Since it was originally 1/9 the pressure drop through the stopcocks, the new pressure drop through the junction must be 2/9 the pressure drop through either of the stopcocks. Since the total must add up to 100%, this means that with both funnels feeding it, the new distribution of pressure is 18.2 percent through the junction, and 82.8 percent through the stopcocks. This means the flow rate through each stopcock is (82.8/90) of what it was before.
This means that although the feed pressure was unchanged, the flowrate through the junction is up to 1.82 times the flowrate with either funnel individually opened. Similarly, each funnel will now drain in 108.7 seconds, which is only slightly longer than it took individually.
If you bias the numbers even more (less pressure drop through the junction, more through the stopcock), you can make the drain time with both funnels feeding arbitrarily close to the single funnel drain time, even though the pressure drop never changes. However, if you increase the flow restriction after the junction, the drain time substantially rises, and if the majority of the pressure drop occurs after the junction, then the flow rate will be largely unaffected by the number of funnels feeding (and thus, the drain time for two funnels will be basically twice the drain time for one). This clearly shows the flaw in your argument - you assume that the increased total flow rate indicates an increased feed pressure, when in reality, it only indicates where the flow restriction in your setup resides.
(Sorry for the rather extensive essay, but I am trying to explain this as clearly as I can).
I'll try to scrounge up materials to demonstrate this experimentally later tonight. I don't have access to nice glassware like you do, but I should be able to find enough material to make this work.