Force between poles of two magnets

Click For Summary
The Biot-Savart law describes the magnetic field generated by electric currents, while Lorentz's force formula calculates the force on a moving charge within that field. The discussion highlights a gap in textbooks regarding the forces between the poles of magnets, specifically the attraction between unlike poles and repulsion between like poles. It introduces the potential energy of a magnetic dipole in a magnetic field, defined as U = -m · B. Derivatives of this potential energy can be used to derive expressions for forces and torques acting on the magnetic dipole. Understanding these concepts is essential for a comprehensive grasp of magnetism.
Meow12
Messages
46
Reaction score
20
Homework Statement
What is the magnitude of the force between two magnets if their poles are separated by a distance ##r##? What is the formula and how would you derive it?
Relevant Equations
Biot-Savart law: ##\displaystyle d\vec B=\frac{I d\vec l\times\hat r}{r^2}##

Lorentz force law: ##\vec F = q\vec v\times\vec B##
The Biot-Savart law gives us the magnetic field created by an electric current. We can calculate the force exerted on a moving charge by this magnetic field using Lorentz's force formula.

But my textbook doesn't address the repulsive or attractive force between like or unlike poles (respectively) of two magnets.
 
Physics news on Phys.org
The potential energy of a magnetic dipole ##\vec m## in a magnetic field ##\vec B## is given by
$$
U = - \vec m \cdot \vec B
$$
Use this and take derivatives as usual to find forces and torques .
 
  • Like
Likes MatinSAR and Meow12
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 1 ·
Replies
1
Views
973
Replies
1
Views
2K
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
12
Views
2K