Force Exerted Non-Uniform Circular Motion

Click For Summary

Homework Help Overview

The problem involves a bucket of water being swung in a vertical circular motion, with specific questions about the forces exerted at the top and bottom of the motion. The subject area includes concepts from dynamics and circular motion.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to determine the forces at the top and bottom of the circular motion, questioning the meaning of "exerted force" and its relation to tension. They explore the use of conservation of energy and derive equations based on their understanding of the forces involved.
  • Some participants question the assumption of minimum speed at the top and suggest deriving the tension at the top as an unknown value to relate it to the bottom tension.
  • There is discussion about the implications of the time taken for one complete revolution and its relevance to the velocity of the bucket.
  • Concerns are raised about the negative tension value obtained from a simulator, prompting questions about the sign convention used.

Discussion Status

The discussion is ongoing, with participants providing guidance on how to approach the problem differently. There is an acknowledgment of the need to clarify assumptions and derive relationships between the forces involved. Multiple interpretations of the problem are being explored, particularly regarding the role of time and tension.

Contextual Notes

Participants are navigating the complexities of circular motion dynamics, including the effects of gravitational force and the need for specific assumptions about speed and tension. The original poster expresses confusion over differing answers and the implications of the problem's parameters.

akgtdoskce
Messages
18
Reaction score
0

Homework Statement


A bucket of water (10kg) is swung vertically. Radius is 1 m. It takes 1 second to spin the bucket in a full circle.
a. How much force has to be exerted at the top of its motion?
b. How much force must be exerted at the bottom?

Homework Equations


vtop=sqrt(gr)
top: Ftension= mv2/r - mg
bottom: Ftension= mv2/r + mg
ac=v2/r

The Attempt at a Solution


This is a fairly straightforward question, but I'm getting different answers. I'm not sure if this exerted force means the same thing as force of tension. If so, then I have force at the top = 0 N, force at the bottom is 588 N.
If v=sqrt (9.8) as the minimum velocity at the top, then conservation of energy gives 1/2mv2top+mg2r=1/2mv2bottom.
Thus, velocity at the bottom of the bucket's motion is 7 m/s. Using the equation F=mv2/r+mg, I get the 588 N answer.
However, when I initially completed this in class, I was told that 490 N was the correct answer for part b. Does this somehow have to do with the 1 second time provided in the original problem, such as assuming constant velocity? I've been thinking over this for quite a while and I just keep getting more confused.
Thanks for any help in advance!
 
Physics news on Phys.org
akgtdoskce said:
I'm not sure if this exerted force means the same thing as force of tension.
Yes.

akgtdoskce said:
I have force at the top = 0 N
You are not told it is the minimum speed to maintain circular motion, so you've no basis for saying the tension is 0 there.

akgtdoskce said:
Does this somehow have to do with the 1 second time provided
Yes.
akgtdoskce said:
such as assuming constant velocity?
No, it won't be constant velocity.
Start again, but taking the tension at the top to be some unknown value. Derive everything else in terms of that, including the time to complete a swing (that's the hard bit). Then set that time equal to 1.
 
haruspex said:
Start again, but taking the tension at the top to be some unknown value. Derive everything else in terms of that, including the time to complete a swing (that's the hard bit). Then set that time equal to 1.
Okay, so if I use 1/2mv2top+mg2r=1/2mv^2bottom, and top: Ftension= mv2/r - mg bottom: Ftension= mv2/r + mg I get Tension at bottom = mv^2(top)/r+4mg/r+mg, which simplifies to Tbottom=Ttop + 6mg.

As for the time, I'm not really sure what to do with that. T=2*pi*r/v, but that is constant velocity.

I used a vertical circular motion simulator to help me visualize the situation, but it returns tension at the top as -296.78 N. Is this even possible?
 
Last edited:
akgtdoskce said:
Tbottom=Ttop + 6mg.
Correct.
akgtdoskce said:
As for the time, I'm not really sure what to do with that.
Hint: SHM.
akgtdoskce said:
tension at the top as -296.78 N. Is this even possible?
Depends what sign convention was used. If up is positive and you asked for the force on the bucket exerted by the tension then it will be negative.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
55
Views
3K
Replies
6
Views
4K
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
11
Views
3K