Force on a sphere in a constant external electric field

AI Thread Summary
An uncharged solid sphere placed in a constant external electric field E0 experiences induced charge separation, resulting in the formation of a dipole. The force on the sphere can be calculated using the induced charge and the electric field near the sphere. The equation F = q*E is applicable, where q represents the induced charge and E is the electric field acting on the sphere. The discussion highlights the importance of recognizing that while the external field is uniform, the induced dipole creates a net force on the sphere. Understanding these concepts is crucial for solving the problem effectively.
captain.joco
Messages
32
Reaction score
0

Homework Statement


An uncharged solid sphere is paced in a constant external electric field E0. What is the force on the sphere?


Homework Equations





The Attempt at a Solution


I know ( already have found ) the electric potential and electric field around the sphere. Also worked out the surface charged density. I don't know how to calculate the force..Any help please?
 
Physics news on Phys.org
Isn't F = q*E ?
 
It seemed too simple somehow... Is q the induced charge on the sphere, and E the electric field close to the sphere??

Thank you for your help
 
captain.joco said:
It seemed too simple somehow... Is q the induced charge on the sphere, and E the electric field close to the sphere??

Thank you for your help

If there is charge separation, what will the net force be?
 
Got it! Thanks a lot for the help!
 
This is the exact question i was looking for help with and still not sure of what the next step is.

I know the uniform E-field causes the sphere to gain an induced dipole. From this how do you get the force? Is it ok to just assume the E-field remains uniform.. this can't be right as there would then be no force and seems there must be a force from the way the question is worded.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top