Form of a Plane Wave? - Solving the Schrodinger Equation

  • Thread starter Thread starter pivoxa15
  • Start date Start date
  • Tags Tags
    Form Plane Wave
pivoxa15
Messages
2,250
Reaction score
1

Homework Statement


The psi function for a free particle is e^(i(kx-wt))

But does it satisfy the SE?

Homework Equations


SE


The Attempt at a Solution


I get w=hk^2/(4(pi)m) when plugged into the SE

but does w really equal that?
 
Physics news on Phys.org
E=hbar w = hbar^2 k^2 / 2m
 
christianjb said:
w = hbar^2 k^2 / 2m
There's one hbar too many in there, no?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top