ssampak
- 5
- 0
Hi, I am trying to read a paper about quantum teleportation and got stuck with calculating the fidelity of the mixed(noisy) channel.
Fidelity F := < \Phi^{(-)}_{12} | \rho_{1} \otimes \rho_{23} | \Phi^{(-)}_{12} >
where \rho_{1} = | \phi_{1} > < \phi_{1} |
and \rho_{23} = t | \Phi^{(+)}_{23}><\Phi^{(+)}_{23}| + (1-t) | \Phi^{(-)}_{23}><\Phi^{(-)}_{23}|
|\phi_{1}> = a|0_{1}> + b|1_{1}>
|\Phi^{(\pm)}_{23}> = 1/sqrt{2} (|00_{23}> \pm |11_{23}>)
Am I doing wrong if terms like < 0_{1} | 1_{3} > appear?
Then, if right what do I have to do with those? If wrong please give me the right way.
Fidelity F := < \Phi^{(-)}_{12} | \rho_{1} \otimes \rho_{23} | \Phi^{(-)}_{12} >
where \rho_{1} = | \phi_{1} > < \phi_{1} |
and \rho_{23} = t | \Phi^{(+)}_{23}><\Phi^{(+)}_{23}| + (1-t) | \Phi^{(-)}_{23}><\Phi^{(-)}_{23}|
|\phi_{1}> = a|0_{1}> + b|1_{1}>
|\Phi^{(\pm)}_{23}> = 1/sqrt{2} (|00_{23}> \pm |11_{23}>)
Am I doing wrong if terms like < 0_{1} | 1_{3} > appear?
Then, if right what do I have to do with those? If wrong please give me the right way.