I Formation of super-massive black holes

AI Thread Summary
Super-massive black holes likely formed early in galaxy history, as evidenced by ULAS J1342+0928, which existed 13.1 billion years ago with 800 million solar masses. In the early universe, matter was less clumped, allowing regions of higher density to nucleate into galaxies, where angular momentum influenced the formation of accretion disks. Low angular momentum matter fell directly into the nucleus, potentially forming a massive star before supernova disruptions could occur. The predominance of dark matter may have delayed supernova readiness, facilitating the rapid formation of black holes through a "direct collapse" mechanism. This theory suggests a feasible pathway for the early and swift emergence of super-massive black holes in the universe.
Green dwarf
Messages
53
Reaction score
4
It seems that the super-massive black holes at the centres of galaxies formed very early in the history of the galaxies (e.g ULAS J1342+0928, which had about 800 million solar masses 13.1 billion years ago).
Presumably, in the very early days, matter in the universe was much less clumped than it is now and dark and light matter would have been more evenly mixed. When regions of higher matter density started to nucleate into galaxies, the parts with high angular momentum relative to the nucleus would have gone into orbit and eventually formed accretionary disks, while the parts with low angular momentum would have fallen more directly and quite quickly into the nucleus. This matter might then have formed a single 'star'. This 'star' might have become very massive (many thousands of solar masses) before having time to be disrupted by supernova explosions or the like. Also, the fact that the material would have been mostly dark matter might have caused it to approach supernova readiness more slowly and photodisintegration of helium nuclei might also have helped stave off supernova explosion.
Is this feasible? If so, could such a 'star' have reached a sufficient mass for the centre to become dense enough to produce a black hole before any supernova-type explosion occurred? And, if so, would this allow for the very early and fast production of super-massive black holes?
 
Astronomy news on Phys.org
Thanks trurle. Once I knew this was called 'direct collapse', I could find plenty written about it.
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Asteroid, Data - 1.2% risk of an impact on December 22, 2032. The estimated diameter is 55 m and an impact would likely release an energy of 8 megatons of TNT equivalent, although these numbers have a large uncertainty - it could also be 1 or 100 megatons. Currently the object has level 3 on the Torino scale, the second-highest ever (after Apophis) and only the third object to exceed level 1. Most likely it will miss, and if it hits then most likely it'll hit an ocean and be harmless, but...
Back
Top