freezer
- 75
- 0
Homework Statement
Sawtooth signal with To = 1, at T=0, x = 0, at T=1, x =1
verify:
<br /> <br /> a_{k} = \left\{\begin{matrix}<br /> \frac{1}{2}, for k=0; & \\\frac{j}{2\pi k}, for k \neq 0; <br /> & <br /> \end{matrix}\right.<br /> <br />
Homework Equations
\frac{1}{T_{0}} \int_{0}^{T_{0}} te^{-j(2\pi/T_{0}))kt}dt
The Attempt at a Solution
for k = 0
a_{0} = \int_{0}^{1} t dt
a_{0} = \frac{1}{2} t^{2} from 0 to 1 = 1/2
for k != 0
\int_{0}^{1} te^{-j(2\pi) kt}dt
u = t
du = dt
dv = e^(-j2\pi kt)
v = \frac{-1}{j2\pi k}e^{-j2\pi kt}t * \frac{-1}{j2\pi k}e^{-j2\pi kt} - \int \frac{-1}{j2\pi k}e^{-j2\pi kt} dt
t * \frac{-1}{j2\pi k}e^{-j2\pi kt} - \frac{e^{-j2\pi kt}}{4\pi^2k^2}
-1/j = j
t * \frac{j}{2\pi k}e^{-j2\pi kt} - \frac{e^{-j2\pi kt}}{4\pi^2k^2}
e^{-j2\pi kt} (t \frac{j}{2\pi k} - \frac{1}{4\pi^2 k^2})
getting close but not seeing where to go from here.
Last edited: