Neothilic
- 21
- 5
- TL;DR Summary
- So I am confused on the steps to find out how you would get to having the second order differential operator to k^2 in the exponent.
Last edited:
Charles Link said:The operator ## \partial^2_x ## is to the left of the ## dk ## integral. The only thing that is of importance here is the ## e^{-ikx} ## term in the integrand. If the operator were by itself, (not in an exponential), I think you can see you get ##-k^2 e^{-ikx} ## when it operates on this term. The effect of the ## \partial^2_x ## operator is ## -k^2 ##. The same thing applies when the operator is in an exponential.
Charles Link said:I think you have the basic idea. You need to operate on ## u_o(x) ## with ##e^{it \partial^2_x } ## though, and the result is ## e^{-it k^2} ##.